һȨר
1. һָֿͽʵʱƷӵĵèۣ
2. һսϲװã
3. Ӿλװã
4. ʿϵͳװã
1ṹܹԴƣ
2. STM32ӲUSBHID˫ͨŽӿƣ
3. DSPCPLDļ״ͼɼʾϵͳ
4. ͶӰάֳIJDSPʵ֣
5. SPIHTͼСӲ㷨
оɹ
1. ԶLoRaߴװã
2. Ӿϵͳ㷨
3. Ӿװ˶λϵͳ
4. Ӿװȱݼ⣻
ġ
1. ƽ̨¥Ԫܵ
ˣ
ϵ绰13832877061
λϢɽѧԺ˹ѧԺ
ַɽдѧ11
ϢȫŶ
ϢȫŶкӱʡϢصʵҺɽϢŶӣоܰȫԿͨš繥ȣŶӳԱ7ˣкijԱ3ˣ2ˣ1ˣʦ4ˡоݰƶʵʱӦͨİȫԿƺںģ͵ͼʶܶԿʵʱƵҵͨԼͨڵʶԿݰʱĻԭӦãӦвŻͨԭϵͳ⣬ʿƵܶԿ
ŶӹϢȫо16ƪSCI¼8ƪEI¼6ƪڿ2ƪȨר7йҷר4ʷר3мϿĿ7ɺ5ֳе뱱ѧоĹȻѧĿɹת3
ŶӾдԵĿĿĺͷרɹʾ
1 ŶӴԿĿ
Ŀ |
Ŀ |
ƶ缴ʱͨŵͨŻԿ |
ȻѧĿ |
ںģ͵ͼʶԿо |
ȻѧĿ |
2 ŶӴ
|
ڿ飩 |
|
Building Covert Timing Channels by Packet Rearrangement over Mobile Networks |
Information Sciences |
SCI Top |
A Packet-reordering Covert Channel over VoLTE Voice and Video Traffics |
Journal of Network and Computer Applications |
SCI Top |
A Code Protection Scheme by Process Memory Relocation for Android Devices |
Multimedia Tools and Applications |
SCI |
A Covert Channel over VoLTE via Adjusting Silence Periods |
IEEE Access |
SCI |
Cryptographic key protection against FROST for mobile devices |
Cluster Computing |
SCI |
3 ŶӴר
|
ר |
Ƿת |
|
һ˫ŵͨŷϵͳ |
ר |
ZL202010180513.0 |
|
һںŵĹϵͳ |
ר |
ZL202011317532.X |
|
ϵ绰13784097979
ַzxs0224@163.com
λϢɽѧԺ˹ѧԺ
ַɽдѧ11
ȽŶ
ȽŶкӱʡϢصʵҡɽƶ¼صʵҡɽڶλصʵҡϵͳԶ֤ҵطϹʵңɽоĿչлоΪĿŻ
ŶӳԱԱ
־ΰʿо
־ᣬʿоʦ
׳˶ʿоʦ
ȽŶܹȻѧ𡢺ӱʡȻѧ ӱʡɽпƼ֡ɽֵȵ֧֣½㷨 ĿŻоӦùȡһоɹ
ȽŶҪоɹԶĿ㷨ڴĿŻоٶԺƽ⣬ø֮ǶӳϵԣþԣԸо࣬һֻǶȺ;ĶĿ㷨ԻڷֽĶĿ㷨⸴ǰصijĿŻ⣬һֽǶȾۺϺȺḶ́ڲͬζ̬ƽȺԺͶԣһֻǶѡͲοӦijĿ㷨ԵĿ㷨Ʋ̶ Symmetric Latinhy PercubeDesign(SLHD)˻ SLHD Ӧֽ㷨ԶĿ㷨 Pareto ǰطֲԲ⣬Ƕ˻ڽǶĶĿֽ㷨Բֽ㷨ƲѰĿ⣬˻һָƽӦֽ㷨ԸάĿŻ⣬˻ڲοͲֱԵĸάĿ㷨ԳʼȺ⣬˻ڷѧϰIJֽ㷨⣬Ŀ黹Ⱥ㷨Ⱥ㷨Ŵ㷨Ƚ㷨ȡ˷ḻоɹ
Ŀ
1.̽ģɷάĿŻоӱʡȻѧϻ10ӱʡȻѧίԱᣬ2022.10
2.άĿ㷨뷽оӱʡߵѧУѧоصĿ5ӱʡ2022.6
3.ֽ㷨ĸĽоɷŻеӦãӱʡƼƻĿӱʡƼ2018.4
4.ParetoǰصĸάĿ㷨оɽпƼƻĿ2021.067.5Ԫ
5.ĿŻĽ㷨оɽ˲Ŀ2022.092Ԫ
6.“1+4”ɷ佨ģάĿ㷨оӱʡߵѧУѧоĿ2.5Ԫӱʡ2019.1
7.ɽƶ¼صʵңмصʵң10ɽпƼ֣2020.12
8.άĿ㷨оɽ˲Ŀ2022.095Ԫ
ģ
[1] Xiong Zhijian, et al. Maximum angle evolutionary selection for many-objective optimization algorithm with adaptive reference vector [J]. Journal of Intelligent Manufacturing, 34, 961–984 (2023). (SCIпԺһTOP, IF:7.136)
[2] Xiong Zhijian, et al. Evolutionary many-objective optimization algorithm based on angle and clustering [J]. Applied Intelligence, 51, 2045–2062 (2021). (SCIпԺ, IF:5.019)
[3] Zhao Zhiwei,* et al. An approach of robust power control for cognitive radio networks based on chance constraints[J]. Peer-to-Peer Networking and Applications, 2019, 12(1): 280-290. (SCI)
[4] Zhiwei Zhao*, et al. A Differential Evolution Algorithm with Self-adaptive Strategy and Control Parameters based on Symmetric Latin Hypercube Design for Unconstrained Optimization Problems[J]. European Journal of Operational Research, 2016, 250(1): 30-45SCI61Σ
[5] Zhao Zhiwei*, et al. Application of artificial bee colony algorithm to select architecture of a optimal neural network for the prediction of rolling force in hot strip rolling process[J]. Journal of Chemical and Pharmaceutical Research, 2013, 5(9): 563-570. (EI)
[6] ־,,.ȺĶĿŻ㷨[J].ѧ,2023,44(02):252-257.
[7] ־ΰ,,,.ڽǶĶĿֽ㷨[J].Ӧ,2017,34(01):22-32.
[8] ־ΰ,,,.һָƽӦֽ㷨[J].,2016,31(05):790-796.
[9] ־ΰ,,л,.вƺIJȷģϵͳȶԺо[J].ѧ,2022,43(03):392-398.
[10] ־ΰ,,־,ΰ.ڶȺܶȹƵĸάĿ㷨ɷ[J].ѧ,2022,43(01):65-71.
[11] ־ΰ,,ΰ־,ô鲨.ڲοͲֱԵĸάĿɷ[J].ѧ,2017,38(06):730-734.
[12] ־ΰ.ڷѧϰIJֽ㷨ɷ[J].ѧ,2017,38(04):453-458.
ר
1.һּ̼װã2020.6
2.һ־ӼԶëװã2020.10
ˣ־
ϵ绰15076525866
ַxiongshipaper@163.com
λϢɽѧԺ˹ѧԺ
ַɽдѧ11
ҵϢŶ
ҵϢŶϢݴƺӱʡصʵҺִұصʵ齨ʵоΪұݷܻսᡢϵͳԭϡ̹ղָܼ⼰Ԥģзˮֵ⼰ơڻӾĻʵʱ⣻սŻϵͳȡ
ŶɽӦûоƼƻĿ“ڻӾѧϰ㷨սȼ⼰Ԥģо”21130233Cʡμ˲Ŀ“ս̴ݵܼŻģо”BJ2021099˹Ȼѧص֧Ŀ“¯ú¼о”U1360205ӱʡȻѧĿ“ڴݼսȫܿϵͳо”E2019209314Լ⣨“ӸּŸ¯800 ” “ǰ״̬ܼ⼰Ԥϵͳо85 ”“ڴ˹ܼĸ¯ܻϵͳӦã390 ”ȣо
ŶսᡢĴݷӦģз濪չϵͳоҵݴѡѧϰѧϰŻ㷨ȼʵ֮ͨԭԣоƶáоɹ£
1.1 üӾRe-Unet繹սʶģ
ͼ1 սʶģͼ
սȷֲӰսҪأǰ˹ߡƵĻɸּⷽصʱͺԣҵչΪʵֶս̵ľȷƣüӾRe-Unet罨սʶģͨ͡ȨƽҶȴ˲ֱͼ⻯ǿȼͼԤ˹ʶģĻݼӷʽŻṹʧRe-UnetдӦÿӻʵսȷֲ㡣ԽģڸʶʵIJ2%ڶսȵľʶ
1.2 kֵAdaboost㷨ˮ¶Ԥģ
ȷؼ¯ˮ¶״̬һսԵĹϸ¯ʵݣһֻAdaboost㷨ˮ¶Ԥģͣģȷȴﵽ±590%ϵʣʵˮ¶ȵȷԤZhao Jun, Li Xin, Liu Song, et al. HIGH TEMP MAT PR-ISR, 2021, 40: 87-98
ͼ2 ˮ¶Ԥģͼ
1.3 ݶ㷨;߹սյԤģ
ͼ3 սյԤģͼ
ս̵صյλòѵ⣬ѡݶ㷨ֱյλԤģͺյ¶ԤģͣԤģ͵Ӧľ߹ 1.25mΧڣӾ߹ģ͵Ԥܴﵽ 85.6%ڴͳڷ¶жյӦŵķԼ 3 Liu Song, Lyu Qing, Liu Xiaojie, et al. ISIJ INT, 2019, 59(12): 2156-2164.ģںӸֳи360m2սͶʹãսյȶԣսתָɸָ
1.4 ˻ڼѧϰ㷨սۺԤģͣԤľȼ
ͼ4 սۺԤģͼ
սȫ̲ݣ㷨սṤϣһսۺ۷Extremely randomized trees㷨սۺָģ͡תָɸָعģͣʵսָߡȷԤLiu Song, Lyu Qing, Liu Xiaojie, et al. IRONMAK STEELMAK, 2020, 47(7): 828-836
1.5 ս̴ѧϰģͣʵ˶սɷֵ뾫Ԥ
˹ȡ컯Ƶεͣʱͺ⣬ѧϰսṤϽ˻ѧɷۺԤģͣʵսɷֵ⼰ǰԤоģ͵ŶȣR2ﵽ 0.92 ϣҾMSEƽMAEֵSong Liu, Xiaojie Liu, Qing Lyu, et al. APPL SOFT COMPUT, 95 (2020) 106574
ͼ5 սɷԤģͼ
Ŀǰڹⷢѧ 20 ƪ SCI 6 ƪ 1 ƪڶ top ڿȨҷר 3 ʵר 1
1оɹѧ1ʾ
1 ѧ
|
Ŀ |
|
ʱ |
|
|
Ӱ |
|
1 |
Comprehensive prediction system of sinter composition based on DNN and LSTM |
Song Liu/1 |
2020-07 |
Applied Soft Computing |
17 |
6.725 |
SCI(JCR Q1) |
2 |
An Online Sintering Batching System Based on Machine Learning and Intelligent Algorithm |
Song Liu/1 |
2021-08 |
ISIJ International |
0 |
1.739 |
SCI(JCR Q2) |
3 |
Synthetically predicting the quality index of sinter using machine learning model |
Liu Song/1 |
2019-05 |
Ironmaking & Steelmaking |
13 |
1.679 |
SCI(JCR Q2) |
4 |
Liu Song/1 |
2019-12 |
ISIJ International |
7 |
1.739 |
SCI(JCR Q2) |
|
5 |
Liu Song/3 |
2021-04 |
HIGH TEMPERATURE MATERIALS AND PROCESSES |
1 |
0.677 |
SCI(JCR Q4) |
|
6 |
Study on the Appropriate Production Parameters of a Gas-injection Blast Furnace |
Liu Song/1 |
2020-02 |
HIGH TEMPERATURE MATERIALS AND PROCESSES |
5 |
0.826 |
SCI(JCR Q4) |
7 |
Study on the Mechanism of CeO2 as Combustion Improver in PCI |
Song Liu/2 |
2016-09 |
Austria: 7th European Coke and Ironmaking Congress |
-- |
-- |
ʻ |
8 |
ڸĽCannyӵսȼⷽ |
/2 |
2022-06 |
ս |
0 |
0.962 |
ڿ |
9 |
ڼѧϰĸ¯ѹԤģо |
/1 |
2022-01 |
Ӳ |
0 |
1.313 |
ڿ |
10 |
սϵͳݼӦ̽ |
/1 |
2021-10 |
|
4 |
2.744 |
ڿ |
11 |
ںϴݼվĸ¯Ż |
/1 |
2019-11 |
|
11 |
2.744 |
ڿ |
12 |
ڴݼսȫܿϵͳ |
̣ͨѶ/2 |
2018-07 |
|
28 |
2.744 |
ڿ |
13 |
¯紵ú¯úѭı仯 |
/1 |
2018-02 |
|
7 |
2.744 |
ڿ |
2ר
1. , ǵ, ־ΰ, С, . ڴݺѧϰսɷԤģ, CN202010956793.X-ʵ飩
2. , ǵ, ƽ, ΰ, . һʵʱжսյ״̬, CN202011127923.5Ȩգ2022.07.01
3. С, , , , . ڴݺͻѧϰսյԤϵͳĽ, CN201810311140.9Ȩգ2020.07.21
4. , , ۧ, С, . һԲͷװ, CN201710006762.6 (Ȩգ2019.11.22)
3ʵר
1. , ǵ, ־ΰ, ΰ, . һսϲװ, CN 217765625 U Ȩգ2022.11.08
ˣ
ϵ绰15732525552
ַneversettle0722@163.com
λϢɽѧԺ˹ѧԺ
ַɽдѧ11