ˣ
ϵ绰13722535639
ַ303406725@qq.com
λϢɽѧԺѧ
ַɽдѧ11
ӦŶ
ֳеĿ
[1] ֥ £ųɱӱʡߵѧУѧоĿ(ƼĿ),յĿĤг-Եת丽ӻо2023
[2] ɽпƼ,ʯīϩ϶ƲDSPRӾо2022.
[3] ɽпƼ,öIJӾ˴о2019.
[4] ֥פɽ¡ɷ˾ӱʡƼԱĿ2023
[5] פɽάƼ˾ӱʡƼԱĿ2023.
дģ
[1] X. Z. Duan, Z. H. He, Y. Yang, and Z. Q. Li, Hopping conductance and macroscopic quantum tunneling effect in three dimensional Pbx(SiO2)1-x nanogranular films. Phys. Rev. B 99(9), 094204, (2019).пԺڿģtopڿģ
[2] Jiang-Jiang Ma, Cheng-Bin Zhang, Ruizhi Qiu, Ping Zhang, Bingyun Ao, and Bao-Tian Wang, Pressure-induced structural and electronic phase transitions of uranium trioxide. Phys. Rev. B 104, 174103, (2021). пԺڿģtopڿģ
[3] X. Z. Duan and Z. H. He, Suppression of the superconducting transition temperature and magnetic-field-induced quantum critical behavior in three dimensional polycrystalline niobium films. Supercond. Sci. Technol. 34, 065008 (2021).пԺڿģ
[4] X. Z. Duan and Z. H. He, Normal state properties and upper critical magnetic field in three-dimensional polycrystalline niobium films, J. Supercond. Nov. Magn. 34, 2517–2522 (2021).
[5] R. Li, X. Z. Duan, X. Zhu, Y. Yang, D. B. Zhou, and Z. Q. Li, Granular-composite-like electrical transport properties of polycrystalline cubic TaNx thin films prepared by rf sputtering method, Solid State Commun. 279, 34-38, (2018).
[6] X. N. Li, G. X. Wang, and X. Z. Duan, The Effects on Electric Field and Hydrostatic Pressure on the Doped Properties in a Strained (In,Ga)N-GaN Coupled Quantum Wells, Journal of Nanoelectronics and Optoelectronics 16, 97-103, (2021).
[7] X. N. Li, G. X. Wang, and X. Z. Duan, Effects of strain and hydrostatic pressure on exciton properties in asymmetric zinc-blende (In,Ga)N/GaN coupled double quantum wells, Journal of Physics and Chemistry of Solids 173, 111107, (2023).
[8] X. N. Li, G. X. Wang, and X. Z. Duan, Effects of electric field and hydrostatic pressure on the exciton states in strained zinc-blende InxGa1−xN-GaN coupled double quantum wells, Materials Science in Semiconductor Processing 157, 107313, (2023).
[9] Cheng-Bin Zhang, Xiuping Li, Wei-Dong Li, and Bao-Tian Wang, Structural, electronic, and elastic properties of equiatomic UZr alloys from first-principles, J. Nucl. Mater., 496: 333-342, (2017).
[10] Cheng-Bin Zhang, Wei-Dong Li, Ping Zhang, and Bao-Tian Wang, First-principles calculations of phase transition, elasticity, phonon spectra, and thermodynamic properties for hafnium, Comput. Mater. Sci., 157: 121-131, (2019).
[11] Cheng-Bin Zhang, Wei-Dong Li, Ping Zhang, and Bao-Tian Wang, Phase transition, elasticity, phonon spectra, and superconductive properties of equiatomic TiZr, TiHf, and ZrHf alloys at high pressure: ab initio calculations, Comput. Mater. Sci., 178: 109637, (2020).
[12] Cheng-Bin Zhang, Wei-Dong Li, Ping Zhang, and Bao-Tian Wang, High-Pressure elastic anisotropy and superconductivity of hafnium: a first-principles calculation. Chin. Phys. B, 30(5), 056202, (2020).
[13] Sha-Sha Huang, Jiang-Jiang Ma, Kan Lai, Cheng-Bin Zhang, Wen Yin, Ruizhi Qiu, Ping Zhang, and Bao-Tian Wang, Point Defects Stability, Hydrogen Diffusion, Electronic Structure, and Mechanical Properties of Defected Equiatomic γ(U,Zr) from First-Principles, materials, 15: 7452, (2017).
[14] Y. Y. Xu, K. Kang, and S. J. Qin, The influence of surface boundary conditions on the phonon contribution to the melting temperature of nanoparticles, Physica. B, 481, 133-136, (2016).
[15] H. Zhou, Y. Y. Xu, and S. Zhou, Electron correlation, spin-orbit coupling, and antiferromagnetic anisotropy in layered perovskite iridates Sr2IrO4, Communication in Theoretical Physics, 70(1), 81-88, (2018).
[16] Junjun Wu, Chao Dou, Lichun Hu, The D-shape elliptical stoma photonic-crystal fiber based on sufrace plasmon resonance with both filtering and sensing, Optical and Quantum Electronics, 53(565), 1-14, (2021).
[17] Junjun Wu, Chao Wang, Lichun Hu, Chao Dou, Performance analysis of photonic crystal fiber polarization filter filled with different materials, Applied Optics, 32(60), 10176-10185, (2021).
[18] Junjun Wu, Shuguang Li, Xili Jing, Chao Dou, Yujun Wang, Elliptical Photonic Crystal Fiber Polarization Filter Combined With Surface Plasmon Resonance, IEEE photonics technology letters, 30(15), 1368-1371, (2018).
[19] Junjun Wu, Shuguang Li, Xinyu Wang, Min Shi, Xinxing Feng, Yundong Liu, Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance, Applied Optics, 2018, 57(15), 4002-4007, (2018).
[20] Junjun Wu, Shuguang Li, Min Shi, Xinxing Feng, Photonic crystal fiber temperature sensor with high sensitivity based on surface plasmon Resonance, Optical Fiber Technology, 43(1) , 90-94, (2018).
[21] Junjun Wu, Shuguang Li, Chao Dou, Qiang Liu, A high extinction and wide bandwidth polarization filter based on surface plasmon resonance, Opt Quant Electron, 50(6), 1-12, (2018).
[22] Jun-Jun Wu, Shu-Guang Li, Qiang Liu, Min Shi, Photonic crystal fiber polarization filter with two large apertures coated with gold layers,Chinese Physics B, 26 (11), 114209, (2017).
[23] Chao Dou, Xili Jing, Shuguang Li, Qiang Liu, Jing Bian, A Photonic Crystal Fiber Polarized Filter at 1.55μm Based on Surface Plasmon Resonance, Plasmonics, 11(4), 1163-1168, (2016).
[24] Chao Dou, Xili Jing; Shuguang Li, Qiang Liu, Numerical analysis of photonic crystal fiber polarization splitter based on surface plasmon resonance, Optical Engineering, 55(9), 096103, (2016).
[25] Chao Dou, Xili Jing, Shuguang Li, Junjun Wu, Qingbo Wang, Low-loss polarization filter at 1.55 μm based on photonic crystal fiber, Optik, 162(6), 214-219, (2018).
[26] Chao Dou, Xili Jing, Shuguang Li, Junjun Wu, Qingbo Wang, Numerical study of ultra-low loss polarization splitter based on dualcore photonic crystal fiber, Optical and Quantum Electronics, 50(6), 255, (2018).
[27] Hong-Wei Zhao, Y-L Li, Li-Chun Hu, Effct of reducing temperature on the structural,electrical and magnetic properties of polycrystalline material La0.67Sr0.20Cu0.10MnO3, 11(1), 243-250, (2016).
[28] KӶƷLa0.75Sr0.25-xKxMnO3Ĵԡ˼´ŵӰ죬ͨ041224-12282016
[29] ƺ䣬ܣѹ糡ԷȷӰ죬 3801104-1062019
[30] ƺ䣬ܣѹ紦ڻӶԵֲӰо 3708101-1021082018
[31] ƺ诣ѹ紦ȷӰ죬 3612101-1021082017
[32] ƺ诣ѹ紦ԴӵӰ켰о 36029-11152017
ר
[1] ר֤·صʵװãˣƺƣ2022.03
[2] ר֤ţɵʵװãˣƺƣ2022.06
[3] ר֤˶ѧʽĹװãˣƺƣ2017.02
[4] ʵרһʵԹܼܣˣ2021.12
[5] ʵרһʵ䣬ˣ2017.09
[6] ʵרһʵģͣˣ2017.09
[7] ʵרһַֹƣˣ2016.06
[8] ʵרһԲôŻʲװãˣ֥壬߰ģ2022.11
[9] ʵרһֹ˲ðװ̶װãˣ2021.02
[10] ʵרһֻ߶ʾǣˣ˳2017.11
Ȩ
[1] ȨԵԳĤ±߹ˣ֥2020.12
[2] Ȩɽ¶ȱ仯ܻˣ֥2020.12
[3] ȨԲߵӽṹģϵͳˣ֥2020.12
[4] Ȩ˴ʼϵͳˣ2021.07
[5] Ȩƽ˴ϵͳˣ2021.07
ˣ֥
ϵ绰13931550125
ַxiuzhiduan@tju.edu.cn
λϢɽѧԺѧ
ַɽдѧ11